Abstract

The reaction of the N6-amino group of lysine residues and 1,2-dicarbonyl compounds during Maillard processes leads to advanced glycation end products (AGEs). In the present work, we deliver a comprehensive analysis of changes of carbohydrates, dicarbonyl structures, and 11 AGEs during the grilling of porcine meat patties. While raw meat contained mainly glyoxal-derived N6-carboxymethyl lysine (CML), grilling led to an increase of predominantly methylglyoxal-derived AGEs N6-carboxyethyl lysine (CEL), N6-lactoyl lysine, methylglyoxal lysine dimer (MOLD), and methylglyoxal lysine amide (MOLA). Additionally, we identified and quantitated a novel methylglyoxal-derived amidine compound N1,N2-di-(5-amino-5-carboxypentyl)-2-lactoylamidine (methylglyoxal lysine amide, MGLA) in heated meat. Analysis of carbohydrates suggested that approximately 50% of the methylglyoxal stemmed from the fragmentation of triosephosphates during the heat treatment. Surprisingly, N6-lactoyl lysine was the major AGE, and based on model incubations, we propose that approximately 90% must be explained by the nonenzymatic acylation of lysine through S-lactoylglutathione, which was quantitated for the first time in meat herein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.