Abstract

Two lasers working in the UV part of the spectrum have been used for the analysis of glass samples. An XeCl excimer laser (308 nm) and a Nd:YAG laser operating at the third harmonic (355 nm) and the fourth harmonic (266 nm) have been selected. The energy was 100 mJ and 5 mJ for the excimer laser and the Nd:YAG laser, respectively. Because of different spot sizes, the fluence was of the same magnitude for both lasers. Crater characterization indicated that the laser ablation efficiency was similar for the two lasers when normalized to the same energy. However, the XeCl was found to be more efficient when the results were normalized to irradiance unit. The amount of probed material and ablated material was measured, leading to an efficiency higher than 80%. The influence of the glass colour and the laser wavelength was evaluated. The XeCl laser provided the largest amount of material but was sensitive to the glass colour. This laser was mainly suitable for bulk analysis. In contrast, the Nd:YAG, particularly at 266 nm, was insensitive to the glass colour and was appropriate for localized analysis. Inductively coupled plasma atomic emission spectrometry was used for atomization and excitation of the ablated material. A good agreement was found between the temporal behaviour of the amount of ablated material and the analyte signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.