Abstract

Abstract A geosynthetic-reinforced pile-supported (GRPS) embankment is a complex soil-structure system. The response of a GRPS system is affected by the interactions among its five linked elements, namely the geosynthetic (a synthetic product used in civil engineering to stabilise the terrain), foundation, granular platform, fill soil, and geological media underlying and surrounding the foundation. The key load transfer mechanism in a GPRS embankment is a combination of various phenomena that include arching in the fill layers, tensioned membrane effect of the geosynthetic, frictional interaction, and support of the soft subsoil. Referring to the current numerical and experimental studies, a new theory has been developed in this study by combining the arching theory for the soil layer and the tensioned membrane theory for the geosynthetic. The subsoil effect with both linear and non-linear models and the frictional interaction are also included in the proposed method, thereby providing a more comprehensive design approach than the earlier methods that considered only either the tensioned membrane theory or the arching theory. It is demonstrated in this work that the proposed method produces results that are in good agreement with the experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.