Abstract

Copy number variations (CNVs) contribute to genome variability and their pathogenic role is becoming evident in an increasing number of human disorders. Commercial assays for routine diagnosis of CNVs are available only for a fraction of known genomic rearrangements. Thus, it is important to develop flexible and cost-effective methods that can be adapted to the detection of CNVs of interest, both in research and clinical settings. We describe a new multiplex PCR-based method for CNV analysis that exploits automated microfluidic capillary electrophoresis through lab-on-a-chip technology (LOC-CNV). We tested the reproducibility of the method and compared the results obtained by LOC-CNV with those obtained using previously validated semiquantitative assays such as multiplex ligation-dependent probe amplification (MLPA) and nonfluorescent multiplex PCR coupled to HPLC (NFMP-HPLC). The results obtained by LOC-CNV in control individuals and carriers of pathogenic MLH1 or BRCA1 genomic rearrangements (losses or gains) were concordant with those obtained by previously validated methods, indicating that LOC-CNV is a reliable method for the detection of genomic rearrangements. Because of its advantages with respect to time, costs, easy adaptation of previously developed multiplex assays and flexibility in novel assay design, LOC-CNV may represent a practical option to evaluate relative copy number changes in genomic targets of interest, including those identified in genome-wide analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.