Abstract
Franck-Condon factors (FCFs) are important parameters and it plays a very important role in determining the intensities of the vibrational bands in electronic transitions. In this paper, we illustrate the Fourier Grid Hamiltonian (FGH) method, a relatively simple method to calculate the FCFs. The FGH is a method used for calculating the vibrational eigenvalues and eigenfunctions of bound electronic states of diatomic molecules. The obtained vibrational wave functions for the ground and the excited states are used to calculate the vibrational overlap integral and then the FCFs. In this computation, we used the Morse potential and Bi-Exponential potential model for constructing and diagonalizing the molecular Hamiltonians. The effects of the change in equilibrium internuclear distance (xe), dissociation energy (De), and the nature of the excited state electronic energy curve on the FCFs have been determined. Here we present our work for the qualitative analysis of Franck-Condon Factorsusing this Fourier Grid Hamiltonian Method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.