Abstract

Magnetic field assisted finishing process is a nanofinishing process which uses magnetic field for precise control of finishing forces. Magnetorheological fluid mixed with diamond abrasive particles in base medium of glycerol, hydrofluoric acid, nitric acid, and deionized water is used as the polishing medium. The novel tool is a magnet fixture made of mu-metal which is used to hold the magnet during finishing. In the present experimental study, finishing at a spot on flat titanium alloy is carried out to analyze the forces involved in the finishing. Normal force is the main force responsible for the indentation by the abrasive particle on the workpiece surface. Tangential force helps in removing indented material. The measured normal force and tangential force during the spot finishing are 3.285 N and 0.43 N, respectively. The final surface roughness achieved after spot finishing is 10 nm from initial surface roughness of 200 nm. The percentage improvement in surface roughness is 95%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.