Abstract

A computational method for predicting the output of a focused laser differential interferometer (FLDI) given an arbitrary density field is presented. The method is verified against analytical predictions and experimental data. The FLDI simulation software is applied to the problem of measuring Mack-mode wave packets in a hypervelocity boundary layer on a 5° half-angle cone. The software is shown to complement experiments by providing the necessary information to allow quantitative density fluctuation magnitudes to be extracted from experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.