Abstract

The most common antennas used for antenna pattern or gain measurements are Standard Gain Horn Antennas, Circular Horn Antennas, Dual Ridge Horn Antennas or Quad Ridge Horn Antennas. In addition, the far-field criteria for the antennas is currently revised as per the latest draft of IEEE 149 standard, based on the largest dimension, D, of the antenna and wavelength, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\lambda$</tex> , of interest. Conventionally, the largest aperture dimension of the antenna is considered as the dimension, D. One could question, if considering the same aperture dimension to compute the far-field distances over entire frequency range is accurate. It could lead to longer test range distances at higher frequencies for broadband horn antennas, which in turn will lead to much larger chamber sizes. Thus, it is imperative to investigate the electrical dimension, D, as a function of frequency for the broadband horn antennas to accurately yield the far-field distances needed to characterize the different antenna parameters like half-power beam width, first null level, side lobe level, etc. This paper explores the utilization of the spherical modes and underlying Minimum Radial Extend (MRE) from Nearfield to Far-field transformation theory to extract the electrical dimension, D, so as to accurately characterize the HPBW across the frequency range. Firstly, the near fields are transformed to far-fields by incorporating spherical modes. The transformed far-fields are compared to the ideal far-field pattern for standard gain horns, with respect to the equivalent noise level parameter over the HPBW solid angle, to compute the acceptance criteria. Based on the acceptance criteria of the equivalent noise level for standard gain horns, the same exercise is repeated for a broadband quad-ridge horn over the HPBW solid angle across the frequency range. The MRE is computed from the number of spherical modes across the frequency range and the electrical dimension, D, is calculated to be twice of the MRE value. The far-field distance is calculated based on the computed electrical dimension and compared to the far-field distance calculated per the physical dimension of the antenna structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.