Abstract

Electromagnetic properties of Ce–Zn substituted barium hexaferrite (Ba0.5Ce0.5ZnFe11O19 ferrite) synthesized using ceramic technique were analyzed in detail in the X band frequencies to describe its response to microwave absorber and microwave electronic device applications. The phase formations, structural morphology, polarization mechanisms and magnetic properties for Ba0.5Ce0.5ZnFe11O19 ferrite, which provide important information about electrical load transmission mechanism were analyzed using X-ray diffraction, scanning electron microscopy, two-port vector network analyser and vibrating sample magnetometer techniques, respectively. The experimental complex dielectric plane plots (Cole-Cole plots) of the Ba0.5Ce0.5ZnFe11O19 ferrite represent an equivalent RC circuit corresponding to the impedance circuit in the Smith Chart. The reflection loss increased to the highest value (−17.04 dB) depending on the amount of Ce in the structure of the Ba0.5Ce0.5ZnFe11O19 ferrite and the bandwidth, which is important for microwave absorbers, increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.