Abstract

ZnO based magnetic semiconductors (MSs) are prominent candidates for the spintronic devices because of their high Curie temperatures and low conductance mismatches. In this paper the spin-polarized transport in MS/nonmagnetic semiconductor (NMS) p–n junction is investigated. A model is established based on semiconductor drift–diffusion theory and continuity equation. Boundary conditions are obtained from the quasi-chemical potential (QCP) relations at the junction interface. For a ZnO based magnetic p–n junction, we calculate the distributions of carrier/spin density and spin polarization at room temperature. It is demonstrated that by choosing proper parameters, effective spin-polarized injection from ZnO based MS into ZnO can be achieved at room temperature without external spin-polarized injection (ESPI) or large bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.