Abstract

Photonic crystal waveguide, to be used as a highly sensitive platform for refractive index based sensing applications, has been analyzed in this paper. The sensing performance is estimated by using dispersion diagram through using plane wave expansion simulations. The dispersion diagram is used to obtain transmittance and cut-off wavelengths for analyzing the sensor characteristics. It has been proposed that the photonic crystal waveguide with ring-type line defect provides a better perspective for sensing applications as compared to the conventional photonic crystal waveguide. An optimized ring-type photonic crystal waveguide structure with a defect filling factor of 50% shows a refractive index sensitivity of 450nm/RIU having almost double the output signal strength compared to hole-type line defect waveguide with the same filling factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.