Abstract

Our knowledge of genomic imprinting in primates is lagging behind that of mice largely because of the difficulties of allelic analyses in outbred animals. To understand imprinting dynamics in primates, we profiledtranscriptomes, DNA methylomes, and H3K27me3 in uniparental monkey embryos. We further developed single-nucleotide-polymorphism (SNP)-free methods, TARSII and CARSII, to identify germline differentially methylated regions (DMRs) in somatic tissues. Our comprehensive analyses showed that allelicDNA methylation, but not H3K27me3, is a major mark that correlates with paternal-biasedly expressed genes (PEGs) in uniparental monkey embryos. Interestingly, primate germline DMRs are different from PEG-associated DMRs in early embryos and are enriched in placenta. Strikingly, most placenta-specificgermline DMRs are lost in placenta of cloned monkeys. Collectively, our study establishes SNP-free germline DMR identification methods, defines developmental imprinting dynamics in primates, and demonstrates imprinting defects in cloned monkey placenta, which provides important clues for improving primate cloning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.