Abstract

Neural networks have been applied to seismic inversion problems since the 1990s. More recently, many publications have reported the use of Deep Learning (DL) neural networks capable of performing seismic inversion with promising results. However, when solving a seismic inversion problem with DL, each author uses, in addition to different DL models, different datasets and different metrics for performance evaluation, which makes it difficult to compare performances. Depending on the data used for training and the metrics used for evaluation, one model may be better or worse than another. Thus, it is quite challenging to choose the appropriate model to meet the requirements of a new problem. This work aims to review some of the proposed DL methodologies, propose appropriate performance evaluation metrics, compare the performances, and observe the advantages and disadvantages of each model implementation when applied to the chosen datasets. The publication of this benchmark environment will allow fair and uniform evaluations of newly proposed models and comparisons with currently available implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.