Abstract

Data from the CYGNSS mission, originally conceived to monitor tropical cyclones, are being investigated here for land applications as well. In this paper, a methodology for soil moisture (SM) retrieval from CYGNSS data is presented. The approach derives Level 3 gridded daily SM estimations, over the latitudinal band covered by CYGNSS, at a resolution of 36 km × 36 km, using the CYGNSS reflectivity over land, coupled with ancillary vegetation and roughness information from the SMAP mission. The results are compared globally with SM measurements from SMAP, which are assumed to be ground truth, showing a good agreement, and a global root-mean-square difference of 0.07 cm3/cm3. A more extensive comparison is performed over two test regions—Texas in the United States and New South Wales in Australia—where reference data from SMAP are complemented with measurements from the SMOS mission. The results over both regions are generally consistent with the global results, and a good agreement is observed between CYGNSS and reference SM measurements from SMAP and SMOS. The study demonstrates that SM can be successfully retrieved from the CYGNSS mission on a global scale and using ancillary information about the overlying vegetation and the characteristics of the soil. The results open up further future perspectives for global, high-resolution SM products from spaceborne Global Navigation Satellite System-Reflectometry data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.