Abstract
Circumventing ice formation is critical to successful cryopreservation by vitrification of large organs. While ice formation during the cooling part of the cryogenic protocol is dictated by the evolving thermal conditions, ice formation during the rewarming part of the cryogenic protocol is also dependent on the history of cooling and storage conditions. Furthermore, while the exothermic effect of ice crystallization during cooling tends to adversely slow down the desired high cooling rates to ensure ice-free preservation, the same effect under some conditions tends to assist acceleration of rewarming during recovery of the specimen from cryogenic storage when limited crystallization does occur. The current study proposes a computational framework to study the thermal effects of crystallization during recovery from cryogenic storage, using a semi-empirical approach to account for the relationship between latent heat effects and the rewarming rate. This study adds another layer of computational capabilities to a recent study investigating similar effects during cooling. Results of this study demonstrate that the thermal effects of crystallization on the local cooling and rewarming rates cannot be neglected. It further explains how crystallization during rewarming helps in increasing the rewarming rate and, thereby, affects rewarming-phase crystallization. Counterintuitively, this study suggests that the fastest possible rewarming rate at the outer surface of the domain in an inwards rewarming problem is not always advantageous, while the proposed computational tool is essential to find an intermediate optimal rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.