Abstract

Low‐angle extensional shear zones, which often characterize the brittle–ductile transition of the continental crust, are seen here to result from strain localization. The potentially destabilizing deformation mechanism is assumed to be the progressive transformation of fractured coarse feldspar grains into white mica as observed in the East Tenda Shear Zone, Alpine Corsica. The coupling between microfracturing and feldspar‐to‐mica reaction is coeval with strain localization that occurred in that field case at a depth close to 15 km. This reaction is proposed as the main destabilizing factor responsible for the onset of localization, with feldspar having a stationary dislocation creep flow stress larger than mica. To test this hypothesis, a rheological model is constructed based on the field observations for a mixture of three phases—mica, quartz and feldspar—deforming at a common strain rate. The phase concentrations change with time according to the feldspar‐to‐mica reaction, which takes place only if feldspar grains are fractured, a condition detected with the Mohr–Coulomb criterion. The tendency for the strain to localize is assessed by numerical means for the structure composed of an upper crust gliding rigidly over the lower crust, which sustains an overall simple shear. The onset of strain localization is defined by an increase of at least two orders of magnitude in strain rate over part of the lower crust. The upper crust gliding velocity has to be increased by at least a factor of 5 for localization to occur. The time lapse for this velocity change determines the depth of the shear zone (15–17 km). The kinetics of the metamorphic reaction and the final amount of white mica control its width (1–4 km). The time of the shear zone formation is less than half a million years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.