Abstract

ABSTRACTIn this article, we study a contact problem between a one-dimensional porous thermoelastic layer and a rigid obstacle. The mechanical problem consists of a coupled system of two hyperbolic partial differential equations and a parabolic one. By defining penalized problems, an energy decay property is obtained. Then, fully discrete algorithms are introduced to approximate both penalized and Signorini problems using the finite element method and the implicit Euler scheme. Stability properties are shown for both problems and a priori error estimates are proved for the penalized problem, from which the linear convergence of the algorithm is derived. Finally, some numerical simulations are performed to demonstrate the accuracy of the approximation and the behavior of the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.