Abstract

To monitor the behavior of specific chromosomes at various stages of mammalian female meiosis, we have combined immunofluorescence staining and fluorescence in situ hybridization (FISH) on intact oocytes. We have utilized this technique to evaluate the behavior of the single X chromosome in oocytes from XO female mice, providing the first observations on segregation of an achiasmate chromosome during mammalian female meiosis and its effect on the meiotic process. As has been described in other species, we found that the univalent chromosome could either segregate as an intact chromosome to one pole or divide equationally at the first meiotic division. Our results also indicate that the presence of a univalent chromosome causes severe meiotic disruption during mammalian meiosis, affecting the alignment and segregation of other chromosomes in the complement. Despite these meiotic abnormalities, the vast majority of oocytes from XO females were able to resume and successfully complete the first meiotic division. This is in contrast to previous studies of male mice with sex chromosome abnormalities where the presence of a univalent acts to arrest meiosis at metaphase of the first meiotic division. This sex-specific difference in the ability of a cell with a univalent chromosome to initiate anaphase suggests that cell cycle control differs between male and female meiosis and that monitoring of meiotic chromosome behavior is less efficient in the female. The combined use of immunofluorescence staining and FISH on intact oocytes has obvious application to the study of meiotic chromosome non-disjunction in the human female. Simultaneous study of the meiotic cell cycle, protein components of the meiotic apparatus, and chromosome-specific behaviors during mammalian female meiosis provides a new approach to defining age-related changes in the meiotic process that result in increased chromosome malsegregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.