Abstract

Long-term moderately high or low temperatures can damage economically important plants. In the present study, we treated Panax notoginseng, an important traditional Chinese medicine, with temperatures of 10, 20, and 30 °C for 30 days. We then investigated P. notoginseng glycerolipidome responses to these moderate temperature stresses using an ESI/MS-MS-based lipidomic approach. Both long-term chilling (LTC, 10 °C) and long-term heat (LTH, 30 °C) decreased photo pigment levels and photosynthetic rate. LTH-induced degradation of photo pigments and glycerolipids may further cause the decline of photosynthesis and thereafter the senescence of leaves. LTC-induced photosynthesis decline is attributed to the degradation of photosynthetic pigments rather than the degradation of chloroplastidic lipids. P. notoginseng has an especially high level of lysophosphatidylglycerol, which may indicate that either P. notoginseng phospholipase A acts in a special manner on phosphatidylglycerol (PG), or that phospholipase B acts. The ratio of sulfoquinovosyldiacylglycerol (SQDG) to PG increased significantly after LTC treatment, which may indicate that SQDG partially substitutes for PG. After LTC treatment, the increase in the degree of unsaturation of plastidic lipids was less than that of extraplastidic lipids, and the increase in the unsaturation of PG was the largest among the ten lipid classes tested. These results indicate that increasing the level of unsaturated PG may play a special role in maintaining the function and stability of P. notoginseng photosystems after LTC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.