Abstract

The growth rate of calcium-silicate-hydrate (C-S-H) was analyzed by following the evolution of calcium and silicon concentrations in supersaturated solutions. In these experiments, the supersaturated solution was produced by mixing a saturated calcium hydroxide solution and a solution obtained from the hydration of tricalcium silicate. A continuous decrease of the silicon concentration over time was observed during the experiments and the C-S-H formation rate was calculated from the amount of silicon that was precipitated between two consecutive analyses.The data obtained in this study demonstrate that the interfacial growth rate of C-S-H depends mainly on the supersaturation with respect to this phase, the availability of calcite as a substrate for heterogeneous nucleation and the calcium concentration in solution. A mean value of approximately 10nmol of C-S-H per m2 per second was obtained for the interfacial growth rate of C-S-H in conditions that are relevant for the hydration of tricalcium silicate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.