Abstract
Alpha-1-antitrypsin (AAT) plays a homeostatic role in attenuating excessive inflammation and augmenting host defense against microbes. We demonstrated previously that AAT binds to the glucocorticoid receptor (GR) resulting in significant anti-inflammatory and antimycobacterial consequences in macrophages. Our current investigation aims to uncover AAT-regulated genes that rely on GR in macrophages. We incubated control THP-1 cells (THP-1control) and THP-1 cells knocked down for GR (THP-1GR-KD) with AAT, performed bulk RNA sequencing, and analyzed the findings. In THP-1control cells, AAT significantly upregulated 408 genes and downregulated 376 genes. Comparing THP-1control and THP-1GR-KD cells, 125 (30.6%) of the AAT-upregulated genes and 154 (41.0%) of the AAT-downregulated genes were significantly dependent on GR. Among the AAT-upregulated, GR-dependent genes, CSF-2 that encodes for granulocyte-monocyte colony-stimulating factor (GM-CSF), known to be host-protective against nontuberculous mycobacteria, was strongly upregulated by AAT and dependent on GR. We further quantified the mRNA and protein of several AAT-upregulated, GR-dependent genes in macrophages and the mRNA of several AAT-downregulated, GR-dependent genes. We also discussed the function(s) of selected AAT-regulated, GR-dependent gene products largely in the context of mycobacterial infections. In conclusion, AAT regulated several genes that are dependent on GR and play roles in host immunity against mycobacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.