Abstract

China is a large agricultural country, where agricultural activities and rural life cause a large amount of greenhouse gas (GHG) emissions. In the process of crop growth, production, and processing, a large number of crop straws and agricultural wasted products are produced, which become one of the important sources of biomass resources. However, few detailed studies focused on the potential of China's agricultural biomass energy conversion and carbon emission reduction, and fewer studies proposed GHG emission reduction strategies from the perspective of making full use of China's agricultural waste resources. In this study, the quantity calculation index of agricultural biomass energy was given, and the GHG emission reduction potential calculation index of agricultural biomass energy was constructed, with which the amount of GHG emissions caused by agricultural waste use in China was measured and the potential of GHG emission reduction caused by agricultural waste use would be easily speculated. Based on the statistical data of China, the quantity and GHG emission reduction potential of agricultural biomass resources in China in the recent 10 years (2009∼2018) were clarified. According to the research, the amount of agricultural waste equivalent to standard coal in China from 2009 to 2018 reached 280,0711 million tons. If all these resources were used to replace coal, a total of 4,474,483 million tons of carbon dioxide emissions could be saved. Assuming that these wastes are anaerobic, carbonized, or fully burned as fuel, CH4 emissions could be reduced by up to 12.024 million tons and N2O emissions by up to 185,000 tons. It can be seen that the effective utilization of agricultural biomass resources can replace coal, reduce backwardness such as land burning, and then reduce CO2, CH4, N2O, and other greenhouse gas emissions, and promote the realization of carbon peak and carbon neutrality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.