Abstract
Compared to detection methods employed by Mars rovers and orbiters, the employment of Mars UAVs presents clear advantages. However, the unique atmospheric conditions on Mars pose significant challenges to the design and operation of such UAVs. One of the primary difficulties lies in the impact of the planet’s low air density on the aerodynamic performance of the UAV’s rotor system. In order to determine the aerodynamic characteristics of the rotor system in the Martian atmospheric environment, a rotor system suitable for the Martian environment was designed under the premise of fully considering the special atmospheric environment of Mars, and the aerodynamic characteristics of the rotor system in the compressible and ultra-low Reynolds number environment were numerically simulated by means of a numerical calculation method. Additionally, a bench experiment was conducted in a vacuum chamber simulating the Martian atmospheric environment, and the aerodynamic characteristics of the UAV rotor system in the Martian environment were analyzed by combining theory and experiments. The feasibility of the rotor system applied to the Martian atmospheric environment was verified, and the first generation of Mars unmanned helicopters was developed and validated via hovering experiments, which thereby yielded crucial data support for the design of subsequent Mars UAV models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.