Abstract

Volume filling of micropores is an adsorption behaviour of adsorbates at higher equilibrium pressures. In this paper, the meaning of the parameters defined in the volume filling theory of micropores is discussed, and the adsorption performance of methane in shale is analysed. Research indicates that it is most appropriate to use the characteristic index curve n = 1 to describe the adsorption behaviour of methane in shale. As adsorption capacity increases, the differential adsorption work (A) will decrease. As the temperature increases, the characteristic energy (E) tends to decrease gradually, and for the case of n = 1, the values of E for shale samples ranged from 4.14 to 5.63 kJmol−1. As the filling rate θ increases, the absolute values of the thermodynamic parameters (Q, ΔH and ΔS) decrease gradually. Under experimental P-T conditions, the values of the thermodynamic parameters change very regularly and do not have mutation characteristics. This indicates that the adsorption energy can be extrapolated under much wider supercritical conditions. We believe that the thermodynamic parameters actually represent the complementarity and comprehensive effects of the TOC and Ro parameters. [Received: April 20, 2017; Accepted: July 8, 2017]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.