Abstract

To improve the trace gas retrieval from Airborne Compact Atmospheric Mapper (ACAM) during the DSICOVER-AQ campaigns, we characterize the signal to noise ratio (SNR) of the ACAM measurement. From the standard deviations of the fitting residuals, the SNRs of ACAM nadir measurements are estimated to vary from ~300 at 310 nm to ~1000 in the blue spectral region; the zenith data are noisier due to reduced levels of illumination and lower system throughput and also show many more pixels with abrupt anomalous values; therefore, a new method is developed to derive a solar irradiance reference at the top of the atmosphere (TOA) from average nadir measurements, at instrument spectral resolution and including instrument calibration characteristics. Using this reference can significantly reduce fitting residuals and improve the retrievals. This approach derives an absolute reference for direct fitting algorithms involving radiative transfer calculations and thus can be applied to both aircraft and ground-based measurements. The comparison of ACAM radiance with simulations using coincident ozonesonde and OMI data shows large wavelength-dependent biases in ACAM data, varying from ~−19% at 310 nm to 5% at 360 nm. Correcting ACAM radiance in direct-fitting based ozone profile algorithm significantly improves the consistency with OMI total ozone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.