Abstract

We analyze an efficient medium access control (MAC) protocol for use in a single cell of a wireless local area network (LAN). A fixed frame structure with two periods is used; one period for making reservations using a slotted Aloha protocol and a second period for data transmission. The MAC protocol operates in a centralized manner in which a single station, the base station, accepts reservations (transmission or data requests) that are made by the remote stations, and then schedules the times in which they will transmit or receive data. We consider two different types of client-server traffic models, an open-loop and a closed-loop model. In the open-loop model, a remote station can generate reservation requests for the base station whether or not it has received a response from the base station. In the closed-loop case, the remote station waits for a response before generating a new request. The performance of the MAC protocol was analyzed exactly for both the open and closed-loop traffic models and for cases in which transmission errors and a mean-value type of radio capture model are included. In addition, different policies were considered for the transmission strategy that is used by the remote stations when they attempt to make reservations. We derive exact results for the mean throughput and waiting times as well as for the queue length distributions. We also derive an approximate Markov chain to treat a case in which a fixed-position capture model is used. Several types of behavior are illustrated through the use of numerical examples. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.