Abstract
In this work we introduce a moving mask approximation to describe the dynamics of austenite to martensite phase transitions at a continuum level. In this framework, we prove a new type of Hadamard jump condition, from which we deduce that the deformation gradient must be of the form $\mathsf{1} +\mathbf{a}\otimes \mathbf{n}$ a.e. in the martensite phase. This is useful to better understand the complex microstructures and the formation of curved interfaces between phases in new ultra-low hysteresis alloys such as Zn45Au30Cu25, and provides a selection mechanism for physically-relevant energy-minimising microstructures. In particular, we use the new type of Hadamard jump condition to deduce a rigidity theorem for the two well problem. The latter provides more insight on the cofactor conditions, particular conditions of supercompatibility between phases believed to influence reversibility of martensitic transformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.