Abstract
In this paper, we study a single server GI/M/1 queue in a multi-phase service environment with disasters, where the disasters occur only when the server is busy serving customers. Whenever a disaster occurs in an operative service phase, all present customers are forced to leave the system simultaneously, the server abandons the service and an exponential repair time is set on. After the system is repaired, the server resumes his service and moves to service phase i immediately with probability q i ,i = 1,2, ... ,N . Using the matrix analytic approach and semi-Markov process, we obtain the stationary queue length distribution at both arrival and arbitrary epochs. After introducing tagged customers and the concept of a cycle, we also derive the sojourn time distribution, the duration of a cycle, and the length of the server’s working time in a service cycle. In addition, numerical examples are presented to illustrate the impact of some critical model parameters on performance measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.