Abstract
In, 1984 Gupta et al. introduced a compact fourth-order finite-difference convection-diffusion operator with some very favorable properties. In particular, this scheme does not seem to suffer excessively from spurious oscillatory behavior, and it converges with standard methods such as Gauss Seidel or SOR (hence, multigrid) regardless of the diffusion. This scheme has been rederived, developed (including some variations), and applied in both convection-diffusion and Navier-Stokes equations by several authors. Accurate solutions to high Reynolds-number flow problems at relatively coarse resolutions have been reported. These solutions were often compared to those obtained by lower order discretizations, such as second-order central differences and first-order upstream discretizations. The latter, it was stated, achieved far less accurate results due to the artificial viscosity, which the compact scheme did not include. We show here that, while the compact scheme indeed does not suffer from a cross-stream artificial viscosity (as does the first-order upstream scheme when the characteristic direction is not aligned with the grid), it does include a streamwise artificial viscosity that is inversely proportional to the natural viscosity. This term is not always benign. 7 refs., 1 fig., 1 tab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.