Abstract

Abstract In this article, the differential transform method (DTM) is used to solve the nonlinear boundary value problems describing heat transfer in continuously moving fins undergoing convective-radiative heat dissipation. The thermal conductivity is variable and temperature dependent. The surface of the moving fin is assumed to be gray with a constant emissivity ɛ. The flow in the surrounding medium provides a constant heat transfer coefficient h over the entire surface of the moving fins. The effects of some physical parameters such as the Peclet number, Pe, thermal conductivity parameter, β, convection-conduction parameter, N c , radiation-conduction parameter, N r , and dimensionless convection-radiation sink temperature, θ a , on the temperature distribution are illustrated and explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.