Abstract
An analysis of a novel liquefied natural gas (LNG) gasification and power generation system integrated with a combined cycle power plant is presented in this article. In the proposed combined cycle, low-temperature waste heat can be efficiently recovered and the cold energy of the LNG can be fully utilized. The latent heat of the spent steam of the steam turbine vaporizes the LNG. The conventional combined cycle and the proposed combined system are simulated using the commercial process simulation package IPSEpro and both energy and exergy analyses are conducted. A parametric analysis has been performed for the proposed combined system to evaluate the effects of several key factors on the performance. The results show that the net electrical efficiency and the total work output of the proposed combined cycle can be increased by 3.8 per cent and 15.6 MW above those of the conventional combined cycle while delivering 33.59 kg/s of natural gas (at 4.3 °C, 0.3 MPa) and saving 0.4 MW of electrical power by removing the need for sea water pumps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.