Abstract

In this study, a packaged silicon base piezoresistive pressure sensor with thermal stress buffer is designed, fabricated, and studied. A finite element method (FEM) is adopted for designing and optimizing the sensor performance. Thermal and pressure loading on the sensor is applied to make a comparison between experimental and simulation results. Furthermore, a method that transforms simulation stress data into output voltage is proposed in this study, and the results indicate that the experimental result coincides with the simulation data. In order to achieve better sensor performance, a parametric analysis is performed to evaluate the system sensitivity, as well as thermal and packaging effects of the pressure sensor. The design parameters of the pressure sensor include membrane size, sensor chip size, glass thickness, adhesive layer thickness, PCB thickness/material, etc. The findings show that proper selection of the sensor structure and material not only enhances the sensor sensitivity but also reduces the thermal effects as well as the packaging influence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.