Abstract
Tin-based Perovskite solar cells (PSC) have emerged as a promising alternative to environmentally hazardous lead-based Perovskite solar cells. The lead-free Perovskite compound (CH3NH3SnI3) is particularly appealing due to its wide absorption spectrum. Perovskite materials both organic and inorganic, exhibit exceptional optical features such as a high absorption coefficient, a tunable band gap, and manufacturing techniques based on solution. The optical absorber material has been used in a novel solar cell composition ITO/TiO2/CH3NH3SnI3/NiO/Mo. To assess the device's performance, several critical parameters were investigated, including, structural layer thickness, carrier mobility, and the defect density. The numerical investigations were carried through solar capacitance simulator SCAPS-1D. By using calculations, Perovskite (CH3NH3SnI3) optical absorbent layer's thickness for the optimum device efficiency was adjusted to 1.032μm, for electron transport layer (ETL) TiO2 the thicknesses was 0.002μm and hole transport layer (HTL) NiO (HTL) optimized thickness was adjusted to be 0.02μm. The device power conversion efficiency (PCE) was found to be 21.068%. Electrical parameters open circuit voltage (Voc), short circuit current (Jsc), Fill Factor (FF %) and quantum efficiency (QE) get influenced by variation in layers thicknesses and interface defect densities. The proposed composition has been thoroughly investigated, and the optimized device performance has been comprehensively analyzed in this study. Current investigations may help to design and manufacture the environmentally acceptable, non-toxic, and efficient solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.