Abstract

This correspondence focuses on the analysis and implementation of multi-input multi-output (MIMO) filtered-u least mean square (FULMS) algorithm for active vibration suppression of a cantilever smart beam with surface bonded lead zirconate titanate patches. By analysing a single-input single-output FULMS algorithm, the MIMO FULMS controller structure is given. Then an active vibration control experimental platform is established, with optimal placement of the actuators and sensors based on the maximal modal force rule. Simulation contrast analysis of FULMS algorithm and the most famous filtered-x least mean square (FXLMS) algorithm is performed while the reference signal is extracted from the exciter as well as directly from the controlled structure. Simulation results show that if the feedback information reflects the reference signal collected by the reference transducers, the FXLMS controller could hardly suppress the vibration while the FULMS controller is still effective. Then the actual control experiment is performed, and the result confirms the simulation results. The designed MIMO FULMS vibration controller has a good control performance, suppressing the vibration significantly with rapid convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.