Abstract

We consider the mathematical formulation and analysis of an optimal control problem associated with the tracking of the velocity and the magnetic field of a viscous, incompressible, electrically conducting fluid in a bounded two-dimensional domain through the adjustment of distributed controls. Existence of optimal solutions is proved and first-order necessary conditions for optimality are used to derive an optimality system of partial differential equations whose solutions provide optimal states and controls. Semidiscrete-in-time approximations are defined and their convergence to the exact optimal solutions is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.