Abstract

This paper presents the analysis and design of a novel magnetic sensor. We study the underlying physics of inductance shift sensors as a special case of the broader family of magnetic energy deviation sensors. The result is a quantitative definition of performance metrics with all assumptions and approximations explicitly stated. This analysis is then used to design a modified ac Wheatstone bridge that uses two inductor-pairs in a cross-coupled configuration, to half its size and double its transducer gain while maintaining a fully differential structure with a matched frequency response. A proof-of-concept sensor was fabricated with peripheral circuitry in a 65-nm bulk CMOS process to operate between 770 and 1450 MHz with an effective sensing area of 200 $\mu \text{m}\,\,\times $ 200 $\mu \text{m}$ . The new bridge sensor is fully characterized at a frequency of 770 MHz and demonstrates a reliable and continuous detection of 4.5- $\mu \text{m}$ iron-oxide magnetic beads over time periods longer than 30 min, appreciably longer than previously reported works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.