Abstract
The voltage source converter (VSC) excitation system is a novel excitation system based on pulse-width modulation (PWM) voltage source converter, which is proposed as improved alternatives to the conventional thyristor excitation systems. This paper aims to provide theoretical confirmation of power system stability enhancement by the VSC excitation system. The reactive current injected to generator terminals by the VSC excitation system can be controlled flexibly. Its capability of enhancing power system stability is investigated in this paper. The simplified model of VSC excitation system suitable for use in system stability studies is developed. An extended Philips–Heffron model of a single-machine infinite bus (SMIB) system with VSC excitation system is established and applied to analyze the damping torque contribution of the injected reactive current to the power system. This paper also gives a brief explanation on why the VSC excitation system can enhance the transient stability in light of equal area criterion. The results of calculations and simulations show that the injected reactive current of VSC excitation system contributes to system damping significantly and has a great effect on the transient stability. When compared with conventional thyristor excitation systems, the VSC excitation system can not only improve the small-signal performance of the power system, but also can improve the system transient stability limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.