Abstract

<abstract> <p>In this paper, a biophysical fractional diffusive cancer model with virotherapy is thoroughly analyzed and analytically simulated. The goal of this biophysical model is to represent both the dynamics of cancer development and the results of virotherapy, which uses viruses to target and destroy cancer cells. The Caputo sense is applied to the fractional derivatives. We look at the governing model's existence and uniqueness. For analytical solutions, the Laplace residual power series approach is used. The study investigates the model's dynamic behavior, shedding light on the development of cancer and the effects of virotherapy. The research advances our knowledge of cancer modeling and treatment options. Numerical simulations show the agreement between the analytical results and the related numerical solutions, proving the usefulness of the analytical solution.</p> </abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.