Abstract
Measurements of the Hubble constant H(z) are increasingly being used to test the expansion rate predicted by various cosmological models. But the recent application of 2-point diagnostics, such as Om(z_i,z_j) and Omh^2(z_i,z_j), has produced considerable tension between LCDM's predictions and several observations, with other models faring even worse. Part of this problem is attributable to the continued mixing of truly model-independent measurements using the cosmic-chronomter approach, and model-dependent data extracted from BAOs. In this paper, we advance the use of 2-point diagnostics beyond their current status, and introduce new variations, which we call Delta h(z_i,z_j), that are more useful for model comparisons. But we restrict our analysis exclusively to cosmic-chronometer data, which are truly model independent. Even for these measurements, however, we confirm the conclusions drawn by earlier workers that the data have strongly non-Gaussian uncertainties, requiring the use of both "median" and "mean" statistical approaches. Our results reveal that previous analyses using 2-point diagnostics greatly underestimated the errors, thereby misinterpreting the level of tension between theoretical predictions and H(z) data. Instead, we demonstrate that as of today, only Einstein-de Sitter is ruled out by the 2-point diagnostics at a level of significance exceeding ~ 3 sigma. The R_h=ct universe is slightly favoured over the remaining models, including LCDM and Chevalier-Polarski-Linder, though all of them (other than Einstein-de Sitter) are consistent to within 1 sigma with the measured mean of the Delta h(z_i,z_j) diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.