Abstract

BackgroundSporadic and sometimes contradictory studies have indicated changes in satellite cell behaviour associated with the progressive nature of human Duchenne muscular dystrophy (DMD). Satellite cell proliferation and number are reportedly altered in DMD and the mdx mouse model. We recently found that satellite cells in MSVski transgenic mice, a muscle hypertrophy model showing progressive muscle degeneration, display a severe ageing-related differentiation defect in vitro. We tested the hypothesis that similar changes contribute to the gradual loss of muscle function with age in mdx and PMP22 mice, a model of human motor and sensory neuropathy type 1A (HMSN1A).MethodsSingle extensor digitorum longus muscle fibres were cultured from mdx and PMP22 mice and age- and genetic background-matched controls. Mice at several ages were compared with regard to the differentiation of satellite cells, assayed as the proportion of desmin-expressing cells that accumulated sarcomeric myosin heavy chain.ResultsSatellite cells of 2 month, 6 month, and 12 month old mdx mice were capable of differentiating to a similar extent to age-matched wild type control animals in an in vitro proliferation/differentiation model. Strikingly, differentiation efficiency in individual 6 month and 12 month old mdx animals varies to a much higher extent than in age-matched controls, younger mdx animals, or PMP22 mice. In contrast, differentiation of myoblasts from all myoD null mice assayed was severely impaired in this assay system. The defect in satellite cell differentiation that occurs in some mdx animals arises from a delay in differentiation that is not overcome by IGF-1 treatment at any phase of cultivation.ConclusionOverall, a defect in satellite cell differentiation above that arising through normal ageing does not occur in mdx or PMP22 mouse models of human disease. Nonetheless, the impaired differentiation of satellite cells from some mdx animals suggests that additional factors, environmental or epigenetic, may lead to deteriorating muscle repair through poor differentiation of satellite cells in genetically predisposed individuals.

Highlights

  • Sporadic and sometimes contradictory studies have indicated changes in satellite cell behaviour associated with the progressive nature of human Duchenne muscular dystrophy (DMD)

  • We found that satellite cells of MSVski transgenic mice display a differentiation defect compared to wildtype control animals and that this defect is exacerbated in ageing animals [14]

  • We investigate the differentiation potential of satellite cells of single muscle fibres from the hypertrophic mdx and PMP22 mouse models and corresponding wildtype control animals in order to clarify whether ageing-related change in differentiation potential of satellite cells might influence disease progression

Read more

Summary

Introduction

Sporadic and sometimes contradictory studies have indicated changes in satellite cell behaviour associated with the progressive nature of human Duchenne muscular dystrophy (DMD). We recently found that satellite cells in MSVski transgenic mice, a muscle hypertrophy model showing progressive muscle degeneration, display a severe ageing-related differentiation defect in vitro. We tested the hypothesis that similar changes contribute to the gradual loss of muscle function with age in mdx and PMP22 mice, a model of human motor and sensory neuropathy type 1A (HMSN1A). Duchenne muscular dystrophy (DMD) is characterised by a gradual loss of muscle function with age. In later stages of DMD, patients experience progressively more severe muscular changes, accompanied by loss of function, physical dependency, and death [1]. DMD patients generally lack the cytoskeletal protein dystrophin, a member of the spectrin-like superfamily of actin binding proteins. BMD is non-lethal and patients often achieve normal life span, the disease can progress in later life [2]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.