Abstract
Recent studies on noninvasive recordings from human brain have shown the existence of taste-elicited activation areas in the cerebral cortex. While functional MRI (f-MRI) and positron CT (PET) are often used for these studies, the magnetoencephalogram (MEG) is the most commonly used instrument for these noninvasive measurements. One advantage of the MEG measurements is the ability to measure rapid taste-elicited time-course data. In this current study, we used brain magnetic fields to quantitate the stimulus latencies evoked by different taste stimuli that use different peripheral transduction mechanisms. Recent work has shown that taste stimuli that presumably act through different transduction processes show different MEG-measured latencies. Here, we measured the latencies due to citric acid and sucrose and compared these with the latency due to the action of the taste-modifying substance contained in miracle fruit during stimulation by citric acid. Miracle fruit has the property of changing the sour taste of acids to sweet taste. The use of this taste-modifying substance allows us to compare the latency of two very different sweet-taste-evoking substances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.