Abstract
High-repetition-rate ultrafast lasers are needed for diverse applications. Harmonic modelocking, where multiple identical, equidistant pulses circulate in the cavity, reaches beyond the practical limitations of reducing the cavity length. However, it suffers from stochastic deviations that manifest as supermodes in the radio-frequency spectrum and difficulties in maintaining the same harmonic state, often coupled with trade-offs in pulse energy, duration, or noise performance. Here, we first show that deviations in the temporal positions of the pulses contribute disproportionately more to the supermodes than deviations in their amplitudes. Then, we argue that these fluctuations are analogous to those of trapped Brownian particles. This analogy reveals that supermodes are suppressed by stronger spectral filtering, which corresponds to fluid viscosity, and higher pulse energy reduces the noise, akin to lower temperature. Guided by this intuitive picture, we construct a Yb-fibre laser incorporating strong filtering and high intracavity energies by limiting nonlinear polarisation evolution to a short section of ordinary fibre. The rest of the all-fibre cavity comprises polarisation-maintaining fibre, which additionally improves environmental robustness. We report record-high supermode suppression ratios, reaching 80 dB, excellent long-term and environmental stability, and pulse energy, duration, and noise characteristics that are similar to fundamentally modelocked lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.