Abstract

Abstract Analogues of the well-known Kolosov–Muskhelishvili formulas of general representations are obtained for nonhomogeneous equations of statics in the case of the theory of elastic mixtures. It is shown that in this theory the displacement and stress vector components, as well as the stress tensor components, are represented through four arbitrary analytic functions. The usual Cauchy–Riemann conditions are generalized for homogeneous equations of statics in the theory of elastic mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.