Abstract

A compact graphene strip-ring hybrid resonator working in the mid-infrared regime is proposed as an analogue of Fano resonator or electromagnetically induced transparency. The dipolar surface plasmon resonance induced by the ring interferes with the x-polarized strip resonance forming a symmetric or asymmetric transparency window within the absorption profile. The spectral response can be modulated not only by the Fermi energy level of graphene, but also the geometry shape of the configuration. The sensitivity reaches 2450 nm/RIU and the light in the transparency window is slowed down to over 1/1090 times the speed in vacuum. The analytic analysis is in accordance with the 3D simulation results. Our compact design may have potential view in optical sensors, optical switches and light storage field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.