Abstract

Guanase is an important enzyme of the purine salvage pathway of nucleic acid metabolism and its inhibition has beneficial implications in viral, bacterial, and cancer therapy. The work described herein is based on a hypothesis that azepinomycin, a heterocyclic natural product and a purported transition state analog inhibitor of guanase, does not represent the true transition state of the enzyme-catalyzed reaction as closely as does iso-azepinomycin, wherein the 6-hydroxy group of azepinomycin has been translocated to the 5-position. Based on this hypothesis, and assuming that iso-azepinomycin would bind to guanase at the same active site as azepinomycin, several analogs of iso-azepinomycin were designed and successfully synthesized in order to gain a preliminary understanding of the hydrophobic and hydrophilic sites surrounding the guanase binding site of the ligand. Specifically, the analogs were designed to explore the hydrophobic pockets, if any, in the vicinity of N1, N3, and N4 nitrogen atoms as well as O5 oxygen atom of iso-azepinomycin. Biochemical inhibition studies of these analogs were performed using a mammalian guanase. Our results indicate that (1) increasing the hydrophobicity near O5 results in a negative effect, (2) translocating the hydrophobicity from N3 to N1 also results in decreased inhibition, (3) increasing the hydrophobicity near N3 or N4 produces significant enhancement of inhibition, (4) increasing the hydrophobicity at either N3 or N4 with a simultaneous increase in hydrophobicity at O5 considerably diminishes any gain in inhibition made by solely enhancing hydrophobicity at N3 or N4, and (5) finally, increasing the hydrophilic character near N3 has also a deleterious effect on inhibition. The most potent compound in the series has a Ki value of 8.0±1.5μM against rabbit liver guanase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.