Abstract

In traditional analog beamforming schemes, like the beam selection method, use the strongest path array steering vector of the channel to generate a beam pointing to the user. In multi-user systems, such schemes will result in the large interference among the users, especially when the users are closely located. In this paper, we designed an analog beamforming scheme for downlink mm-wave multi-user systems to enhance the beamforming gain and suppress the inter-user interference at the same time. A multi-objective problem is developed to beat a balance between the inter-user interference and the beamforming gain. To solve the problem, we firstly use the weighted-sum method and then -constraint method to transform the multi-objective problem into a single-objective problem. Then, the analog beamforming is made tractable with the constant-magnitude constraints with the use of semidefinite programing technique. Adding to these, the robust beamforming is designed to mitigate the effects of the channel estimation and to provide the robustness against the imperfect channel information. The simulation results shows that the -constraint method outperforms when compared with the weighted-sum method at high SNR’s for the robust multi-user analog beamforming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.