Abstract

Treating a synthetic wastewater containing phenol as the sole substrate at 26 degrees C, an upflow anaerobic sludge blanket reactor was able to remove over 98% of phenol up to 1,260 mg/l in wastewater with 12 h of hydraulic retention time, corresponding to 6.0 g-COD/(l x day). Results showed that benzoate was the key intermediate of phenol degradation. Conversion of benzoate to methane was suppressed by the presence of phenol. Based on DNA cloning analysis, the sludge was composed of five groups of microorganisms. Desulfotomaculum and Clostridium were likely responsible for the conversion of phenol to benzoate, which was further degraded by Syntrophus to acetate and H2/CO2. Methanogens lastly converted acetate and H2/CO2 to methane. The role of epsilon-Proteobacteria was, however, unclear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.