Abstract

Aquaculture is a climate-relevant source of greenhouse gases like methane. Methane emissions depend on various parameters, with organic matter playing a crucial role. Nevertheless, little is known about the composition of organic matter in aquaculture. We investigated the effects of excessive loading of high-protein fish feed on the quality of sediment organic matter in a fishpond to explain extremely high methane ebullition rates (bubble flux). Analysing the molecular composition of water-extractable organic matter using liquid chromatography Fourier-transform ion cyclotron resonance mass spectroscopy, we found strong differences between the feeding area and open water area: low-molecular weight nitrogen and sulphur-rich organic compounds were highly enriched at the feeding area. In addition, methane ebullition correlated well with sediment protein content and total bound nitrogen in pore water. Our results indicate that feed proteins in the sediments are hydrolysed into oligopeptides (CHNO) and subsequently converted to CHOS and CHNOS components during anaerobic deamination of protein and peptide fragments in the presence of inorganic sulphides. These metabolites accumulate at the feeding area due to continuous feed supply. Our findings illustrate the adverse effects of excessive feeding leading to bioreactor-like methane emissions at the feeding area. Improving feed management has the potential to make aquaculture more climate-friendly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.