Abstract

An X-band (ca. 9-10 GHz) continuous wave saturation recovery spectrometer to measure electron spin-lattice relaxation (T1) was designed around an arbitrary waveform generator (AWG). The AWG is the microwave source and is used for timing of microwave pulses, generation of control signals, and digitizer triggering. Use of the AWG substantially simplifies the hardware in the bridge relative to that in conventional spectrometers and decreases the footprint. The bridge includes selectable paths with different power amplifications to permit experiments requiring hundreds of milliwatts to fractions of nanowatts for the pump and observe periods. The signal is detected with either a single or quadrature-output double balanced mixer. The system can operate with reflection or crossed-loop resonators. The source noise from the AWG was decreased by addition of a Wenzel high-stability clock. The source is sufficiently stable that automatic frequency control is not needed. The spectrometer was tested with samples that contained 1 × 1015 to 8 × 1017 spins and have T1 between a few hundred ns and hundreds of μs. Excellent signal-to-noise ratio was obtained with acquisition times of 2-90 s. Signal-to-noise performance is similar to that of a conventional saturation recovery spectrometer with a solid-state source. The stability and data reproducibility are better than with conventional sources. With replacement of frequency-sensitive components, this spectrometer can be used to perform saturation recovery measurements at any frequency within the range of the AWG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.