Abstract

<p>From the perspective of numerical weather prediction and nowcasting, the atmospheric boundary layer (ABL) is one of the most undersampled regions of the atmosphere due to difficulties of spaceborne remote sensing at these altitudes. Ground-based microwave radiometers (MWR) have the potential to contribute to the closing of this gap. Indeed, commercial K- and V-band (20-60 GHz) radiometers provide observations of temperature profile, water vapour and liquid water and are most sensitive to the ABL due to their choice of spectral channels and observation geometry.<br>EUMETNET's E-PROFILE observation programme has thus evaluated the potential for a European network of ground-based microwave radiometers. The stakeholder needs were inferred from WMO and EUMETNET Statements of Guidance, OSCAR and a dedicated user survey. The maturity and effectivity of the technology was assessed through a literature review and experts judgements comprising recent large-scale campaigns, experiences with long-term usage and assimilation trials and outcomes of the recent COST action TOPROF. Last but not least, the availability of existing instrumentation from which a European network could be built up was investigated. <br>Based on this study, EUMETNET decided to establish an operational MWR network by 2023 with continuous near real-time provision of brightness temperatures, humidity and temperature information from a centralised retrieval as well as forecast indices for fore- and nowcasting. The products will come along with different monitoring quality control stages at timescales from near real-time to monthly. Special care will be dedicated to ensure reliable absolute calibration results by accounting for the recent developments and recommendations from TOPROF. In the setting up and operation of the network as well as in the implementation of retrievals and monitoring, important synergies with the ACTRIS programme and the scientific community gathered in the COST action PROBE are expected.<br>The presentation will briefly outline the reasoning for setting up the network but mainly focusses on the operational aspects and services that E-PROFILE MWR will provide. Moreover, the first steps taken towards an operational network will be discussed and the general roadmap outlined.</p>

Highlights

  • OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications

  • OSA3.5: MEDiterranean Services Chain based On climate PrEdictions (MEDSCOPE)

  • UP2.1 : Cities and urban areas in the earth- OSA3.1: Climate monitoring: data rescue, atmosphere system management, quality and homogenization 14:00-15:30

Read more

Summary

Introduction

OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications. EMS Annual Meeting Virtual | 3 - 10 September 2021 Strategic Lecture on Europe and droughts: Hydrometeorological processes, forecasting and preparedness Serving society – furthering science – developing applications: Meet our awardees ES2.1 - continued until 11:45 from 11:45: ES2.3: Communication of science ES2.2: Dealing with Uncertainties

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.